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1 General Boundary Value Problems for Elliptic PDEs

1.1 How do we make sense of “regular” boundary value problems for
eliiptic PDEs?

In this lecture, we will assume that P is an elliptic operator in divergence form:

Pu = −∂j(aj,k∂ku) + bj∂ju+ cu.

Let U be an open, bounded, connected subset of Rd with C1 boundary ∂U . A general
boundary value problem might be of the form{

Pu = 0 in U

Bu|∂U = g (on ∂U)

for some operator B.
So far, we have focused on the Dirichlet boundary condition{

Pu = 0 in U

u|∂U = g (on ∂U)

By introducing an extension g̃ of g to U , we could set, without loss of generality, g = 0.
With this reduction, the problem we have considered is{

Pu = 0 in U

u|∂U = 0 (on ∂U).

Our goal now is to generalize our elliptic theory to other boundary conditions. This
will force us to consider what is a “regular” boundary value problem for PDEs. In order to
solve a k-th order ODE, you need k pieces of data on the boundary. For the wave equation,
which is a second order PDE, you impose boundary values and normal derivative values.
Unlike ODEs, the wave equation, or Cauchy-Kovalevskaya, when we work with an elliptic
PDE like −∆u = f , we do not prescribe the full u, ∂∂vu on ∂U . How do we rigorously
justify this high level discussion? We will see two approaches.
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1.2 Weak formulations of boundary problems

Prove a uniqueness theorem via the energy method.

Example 1.1. If P = −∆ and we are solving{
−∆u = 0 in U

u|∂U = g (on ∂U)

then

0 =

∫
U
−∆uu dx =

∫
|Du|2 dx.

Note the parallel between this basic consideration and our weak formulation of the
Dirichlet problem: u ∈ H1 solves the Dirichlet problem{

Pu = f in U

u|∂U = g (on ∂U)

if and only if u ∈ H1
0 (U) and −∆u = f in the sense of D′(U). This is equivalent to∫

U
aj,k∂u∂kϕ+ bj∂juϕ+ cuϕ dx =

∫
U
fϕ dx ∀ϕ ∈ H1

0 (U).

We will try to generalize this weak formulation to other boundary conditions.

Example 1.2. Consider the Neumann boundary condition{
Pu = f in U

νj∂ju|∂U = g (on ∂U)

We can rewrite this as {
Pu = f in U

aj,kνk∂ju|∂U = g (on ∂U)

In the case of the Laplace equation, this is the same. From the point of view of differential
geometry, this is a more natural quantity to look at because νk is dh, where h is the
boundary defining form. The natural Riemannian metric in this problem is a. By an
extension procedure, we can write the problem as{

Pu = f in U

aj,kνk∂ju|∂U = 0 (on ∂U)

For simplicity, assume b = c = 0. Then we have the formal computation∫
U
fϕ dx =

∫
U
−∂j(aj,k∂ju)ϕdx =

∫
U
aj,k∂ju∂kϕdx−

∫
∂U
νja

j,k∂ku︸ ︷︷ ︸
=0

ϕdA.
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This motivates the following definition:

Definition 1.1. We say that u satisfies the Neumann boundary problem if for all
ϕ ∈ H1(U), ∫

U
aj,k∂ju∂kϕdx =

∫
U
fϕ dx.

Remark 1.1. If u ∈ C1 then this formulation should be equivalent to the classical one.

Once we formulate the problem like this, the L2 theory is easy to generalize.

Theorem 1.1. Suppose ∂U is C1, a � λI in U , and a ∈ L∞ (also b, c ∈ L∞). Then

1. For any µ ∈ R, the map u 7→ Pu − µu associated to the Neumann boundary value
problem

(NPµ)

{
Pu− µu = f in U

aj,kνj∂ju|∂U = g (on ∂U)

is Fredholm with index 0 from H1(U) → (H1(U))∗ ⊆ H−1(U). That is, one of the
following holds:

(i) For all f ∈ L2(U), there exists a unique u ∈ H1 which solves the Neumann
boundary problem (NPµ).

(ii) There exists a solution v 6= 0 to (NPµ) with f = 0. Furthermore, for µ � 1,
alternative (i) applies.

2. If ∂U is Ck and a, b, c ∈ Ck, then

‖u‖H1+k(U) . ‖f‖Hk−1(U) + ‖u‖Hk(U).

Example 1.3. Take P = −∆ and solve{
−∆u = 0

u|∂U = 0.

This has a nontrivial solution v = const 6= 0.

This leads to solvability for f orthogonal to the kernel of the adjoint. In this case, this
is equivalent to

∫
U f dx = 0.

For other boundary conditions, this weak formulation also makes sense.

Definition 1.2. We say that u satisfies the Robin boundary problem if for all ϕ ∈
H1(U), ∫

U
aj,k∂ju∂kϕdx+

∫
∂U
αuϕdS =

∫
U
fϕ dx.
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Example 1.4 (Oblique Dirichlet boundary condition). Suppose b = c = 0, and consider
the problem

(OP)

{
Pu = f

Xj∂ju = 0,

where X is transversal to ∂U , outward. Then X = X⊥ + X>, where X⊥ is parallel to
aj,kνk ~ek. Normalize to make X⊥ = aj,kνj ~ek. This tells us that∫

U
aj,k∂ju∂kϕ+

∫
∂U
X>uϕdA =

∫
U
fϕ dx.

The second term is trickier to make sense of, since we need to make sense of the trace.
As an exercise, check that

∫
Rd−1 ∂uv dx is well defined for u, v ∈ H1/2(Rd−1). This is just

barely well-defined, however, in the sense of the trace theorem needing H1/2.

1.3 The “microlocal” formulation

The reference for this section is volume 1 of Taylor’s PDE book, section 5.11. Look at the
Laplace equation −∆u = 0 in the half space Rd+. Write z for the last variable and x for the
remaining d−1 variables, so this is −∂2z −∆xu = 0. Suppose we have boundary conditions
u|∂U =? and ∂zu|∂U =?. We can view this as an evolution equation in the z variable and
take the Fourier transform in x to get

(−∂2z + |ξ|2)û = 0

with boundary conditions û|z=0 = g and ∂zû|z=0 = h. This gives

(̂z, ξ) = a+(ξ)e|ξ|z + a−(ξ)e−|ξ|z.

However, the first term e|ξ|z is a problem because growth in Fourier space corresponds to
a lack of regularity in physical space. So in order to have boundary regularity, we want
a+(ξ) = 0. This means that we are only left with half of the full freedom to choose ĝ and
ĥ.

The claim is that the constant coefficient picture generalizes to the variable coefficient
picture. The idea is that using the technique of “freezing the coefficients,” we can formu-
late the notion of a “regular” elliptic boundary value problem, for which we have elliptic
regularity and the Fredholm property, based on the constant coefficient computation.

Here, we assume that a, b, c ∈ C∞(U) and that ∂U is C∞.

Definition 1.3. For k ≥ 1, define

Hk−1/2(∂U) = {g = v|∂U : v ∈ Hk(U)},

with the norm
‖g‖Hk−1/2(∂U) = inf

u:u|∂U=g
‖u‖Hk(U).
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Remark 1.2. If we define fractional Sobolev spaces on manifolds, this will actually be the
k − 1/2 Sobolev space on ∂U .

Now consider the boundary problem{
Pu = f in U

Bu|∂U = g.

Here, we assume that P : C∞(U) → C∞(U) and B(·)|∂U : C∞(U) → C∞(∂U). Given
x0 ∈ ∂U , there exists a boundary straightening map near x0. In these variables, write

P = −∂2z + P1(y, z,D
2
y) ∂z + P0(y, z,Dy, D

2
y),

B = b∂z +B0(y, z, ∂y).

Say x0 is mapped to 0, and let Px0 be the frozen constant coefficient operator

Px0 = −∂2z + P1(0, 0, Dy)∂z + P0(0, 0, ;Dy, D
2
y),

Bx0 = b(0, 0)∂z +B0(0, 0, ∂y).

Definition 1.4. A boundary value problem is a regular elliptic boundary value prob-
lem if for all x0 ∈ ∂U , for all ξ ∈ Rd−1, and for all ζ, there exists a unique bounded solution
to the ODE

Px0 û(z, ξ) = 0, Bx0 û(z, ξ) = ζ.

This is called the Loputinski-Shapiro condition. This is like if we pretend we take
the Fourier transform and replace ∂y by cξ. This condition gives an ODE in z.

Theorem 1.2. For a regular elliptic boundary value problem, the map Hk+2(U) 3 u 7→
(Pu,Bu) ∈ Hk(U) × Hk−(order B)−1/2(∂U) is Fredholm, and we have elliptic (boundary)
regularity

‖u‖Hk+2(U) . ‖f‖Hk(U) + ‖Bu‖Hk−(order B)−1/2(∂U) + ‖u‖Hk+1(U).
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