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1 General Boundary Value Problems for Elliptic PDEs

1.1 How do we make sense of “regular” boundary value problems for
eliiptic PDEs?

In this lecture, we will assume that P is an elliptic operator in divergence form:
Pu = —0;(a?*Ou) + ¥ dju + cu.

Let U be an open, bounded, connected subset of R? with C! boundary dU. A general
boundary value problem might be of the form

Pu=0 inU
Buloy =g (on 0U)

for some operator B.
So far, we have focused on the Dirichlet boundary condition

Pu=20 inU
ulg, =g (on 9U)

By introducing an extension g of g to U, we could set, without loss of generality, g = 0.
With this reduction, the problem we have considered is

Pu=0 inU
ulg, =0 (on OU).

Our goal now is to generalize our elliptic theory to other boundary conditions. This
will force us to consider what is a “regular” boundary value problem for PDEs. In order to
solve a k-th order ODE, you need k pieces of data on the boundary. For the wave equation,
which is a second order PDE, you impose boundary values and normal derivative values.
Unlike ODEs, the wave equation, or Cauchy-Kovalevskaya, when we work with an elliptic
PDE like —Au = f, we do not prescribe the full u, %u on OU. How do we rigorously
justify this high level discussion? We will see two approaches.



1.2 Weak formulations of boundary problems
Prove a uniqueness theorem via the energy method.

Example 1.1. If P = —A and we are solving

ulg, =g  (on 0U)

0—/ —Auudm—/\Du]Qdaﬂ.
U

Note the parallel between this basic consideration and our weak formulation of the
Dirichlet problem: u € H' solves the Dirichlet problem

Pu=f inU
ulg, =g (on 9U)

{—AuzO inU

then

if and only if u € H}(U) and —Au = f in the sense of D'(U). This is equivalent to

/ a"*Qudyp + b djup + cup dz :/ fedr Vo€ Hy(U).
- U

We will try to generalize this weak formulation to other boundary conditions.

Example 1.2. Consider the Neumann boundary condition

Pu=f inU
vdulg, =g (on OU)

We can rewrite this as
{Pu =f in U

a’*vduls, =g  (on OU)

In the case of the Laplace equation, this is the same. From the point of view of differential
geometry, this is a more natural quantity to look at because vy is dh, where h is the
boundary defining form. The natural Riemannian metric in this problem is a. By an
extension procedure, we can write the problem as

{Pu:f inU

a?*fvdjuls, =0  (on OU)

For simplicity, assume b = ¢ = 0. Then we have the formal computation

/fgod:l::/ —Oj(aj’kaju)gpdw:/aj’kﬁjuakgpdaj—/ Vjaj’kakupdA.
U U U U S~ —



This motivates the following definition:

Definition 1.1. We say that u satisfies the Neumann boundary problem if for all
p e H\(U),

/ aj’kﬁjuakgpdx :/ fodz.

U U

Remark 1.1. If u € C! then this formulation should be equivalent to the classical one.
Once we formulate the problem like this, the L? theory is easy to generalize.

Theorem 1.1. Suppose OU is C1, a = X in U, and a € L* (also b,c € L>°). Then

1. For any p € R, the map v — Pu — pu associated to the Neumann boundary value
problem

Pu—pu=f in U
a?*v;0;uls, =g  (on OU)

|

is Fredholm with index 0 from H*(U) — (HY(U))* € H=Y(U). That is, one of the
following holds:

(i) For all f € L*(U), there exists a unique uw € H' which solves the Neumann
boundary problem (NP ).

(1t) There ezists a solution v # 0 to (NP,) with f = 0. Furthermore, for p > 1,
alternative (1) applies.

2. If OU is C* and a,b,c € C*, then
lull ey S I Nas—1wy + lwllge -
Example 1.3. Take P = —A and solve
—Au=0
{U|BU =0.

This has a nontrivial solution v = const # 0.

This leads to solvability for f orthogonal to the kernel of the adjoint. In this case, this
is equivalent to [;; f dx = 0.
For other boundary conditions, this weak formulation also makes sense.

Definition 1.2. We say that u satisfies the Robin boundary problem if for all ¢ €

HY(U),
/aj’kajuakgodx+/ augodS:/ feodx.
U U U
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Example 1.4 (Oblique Dirichlet boundary condition). Suppose b = ¢ = 0, and consider

the problem
Pu =
opydFu=1
Xjajuzo,

where X is transversal to OU, outward. Then X = X+ + X7, where X' is parallel to
a’*ugé;,. Normalize to make X+ = ajvkyje_;;. This tells us that

/aj’kaju8k90+/ XTugodA:/ fpdx.
U oU U

The second term is trickier to make sense of, since we need to make sense of the trace.
As an exercise, check that [, , Quvdzx is well defined for u,v € H 1/2(R4=1). This is just
barely well-defined, however, in the sense of the trace theorem needing H'/2.

1.3 The “microlocal” formulation

The reference for this section is volume 1 of Taylor’s PDE book, section 5.11. Look at the
Laplace equation —Awu = 0 in the half space Ri. Write z for the last variable and x for the
remaining d — 1 variables, so this is —9? — A u = 0. Suppose we have boundary conditions
ulpy =7 and O,u|sy =7. We can view this as an evolution equation in the z variable and
take the Fourier transform in = to get

(2 +EPu=0
with boundary conditions u|,—9 = ¢g and 9,u|,—o = h. This gives

(2,6) = a4 (€)el + a_(g)e ¢,

However, the first term elél# is a problem because growth in Fourier space corresponds to
a lack of regularity in physical space. So in order to have boundary regularity, we want
a(§) = 0. This means that we are only left with half of the full freedom to choose g and
h.

The claim is that the constant coefficient picture generalizes to the variable coefficient
picture. The idea is that using the technique of “freezing the coefficients,” we can formu-
late the notion of a “regular” elliptic boundary value problem, for which we have elliptic
regularity and the Fredholm property, based on the constant coefficient computation.

Here, we assume that a,b,c € C°°(U) and that oU is C*°.
Definition 1.3. For k& > 1, define
H*12(00) = {g = vlov : v € H*(U)},
with the norm

HgHkal/Q(aU): inf HuHHk(U)-
wulpy=g



Remark 1.2. If we define fractional Sobolev spaces on manifolds, this will actually be the
k —1/2 Sobolev space on QU .

Now consider the boundary problem
Pu=f inU
Bulay = g.

Here, we assume that P : C*°(U) — C*°(U) and B(:)|gy : C*(U) — C*(0U). Given
xg € OU, there exists a boundary straightening map near xg. In these variables, write

P = _83 + Pl(yvzaDZ) 9: + Po(y,Z,Dy,DZ),
B = b0, + By(y, z,0y).

Say z¢ is mapped to 0, and let P, be the frozen constant coefficient operator
Py = =02 + P1(0,0,Dy)0 + P(0,0,; Dy, D),
By, = 6(0,0)0, + By(0,0,0y).

Definition 1.4. A boundary value problem is a regular elliptic boundary value prob-
lem if for all zy € AU, for all ¢ € R4™1, and for all ¢, there exists a unique bounded solution
to the ODE

Py u(z,£) =0, By u(z,&) = C.

This is called the Loputinski-Shapiro condition. This is like if we pretend we take
the Fourier transform and replace 9y, by c£. This condition gives an ODE in z.

Theorem 1.2. For a regular elliptic boundary value problem, the map H*2(U) 3 u
(Pu, Bu) € H¥(U) x HF=(order B)=1/2(91]) s Fredholm, and we have elliptic (boundary)
reqularity
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